by Damon Nazarenko | Oct 16, 2017 | Ecology, Green Issues, Health, Wood
The International Union for Conservation of Nature and Natural Resources (IUCN for short) is a non-profit that identifies flora and fauna threatened with extinction. They’re committed to conservation and to provide the world “with the most objective, scientifically-based information on the current status of globally threatened biodiversity.”
The Emerald Ash Borer beetle arrived in Michigan from Asia in the late 1990s via infested shipping pallets. Without predators they’ve spread rapidly. In their larval stage they bore a channel under the bark that girdles and kills the tree. Tens of millions of Ash trees in North America have died as a result. An entire Ash forest can be wiped out within six years of infection. The IUCN just classified five of the six most prominent Ash tree species in North America as “Critically Endangered.” The sixth Ash specie is assessed as “Endangered.” The only classification beyond “Critically Endangered” is “Extinct”, which means that the IUCN has just reported that Ash trees in North America are on the verge of extinction.
It’s hard to imagine the North American deciduous forests without Ash trees. They are a key component to the forest ecology providing habitat and food for squirrels, birds and insects. They are also a valuable timber used in the production of furniture and flooring. Ash has beautiful white and creamy colors with a grain pattern as distinctive as Oak. Its natural elasticity and a high resistance to impact made it a favorite wood for tool handles, baseball bats, and hockey sticks. It’s quite possible that we’ve held Ash in our hands more than any other hardwood. Planet Hardwood recognized early signs of stress when many flooring mills removed Ash from their menu. Mainstream flooring production with the color consistency necessary to qualify as a “select” grade of Ash has been unavailable for over two years. There’s a frantic effort to stem the destruction, but the Ash Borers’ range naturally increases with higher average temperatures, threatening six billion trees. Human activity via the movement of lumber and firewood unintentionally contributes to the spread. Every Vermont state park has signs that remind people of the danger.
This isn’t the first time we’ve seen this. Only a tiny fraction of Elm trees proved resistant to Dutch Elm Disease. It’s caused by an invasive spore that attaches itself to bark beetles. Postcards from the fifties still showed Elm trees, with their fluted profile, providing a beautiful tunnel of green for city streets in Burlington Vermont. By the time I got here in the 1970’s most were gone or dying. The most famous instance of an invasive species impacting our hardwood forest is the Chestnut blight. It’s estimated that the American Chestnut tree was between 1/4 and a 1/2 of the entire volume of hardwood that grew within its range. The contribution Chestnut made to the forest ecology and to human survival is difficult to appreciate. Its wood was used in all phases of construction; its bark was a source of tannins for making leather; and its nuts provided nourishment for wildlife, livestock, and people. Chestnut was soft enough to work with hand tools, and its natural resistance to environmental degradation made it a popular wood for hand-hewn post-and-beam construction. In the beginning of the twentieth century a fungus was imported from Asia and within fifty years ten billion Chestnut trees succumbed. When it comes to the destruction of an entire well-established species by a disease, it’s hard to find an example in modern history that compares to the Chestnut blight.
American Chestnut flooring is only available now using wood rescued from old buildings, and it’s very expensive. Ash might follow a similar path. As for your old baseball bats and hockey sticks?… Hold on to those. Anything made from Ash could be the last of its kind.
by Damon Nazarenko | Apr 1, 2016 | Green Issues, Health
“Zero VOC’s” has become a the tipping point between products judged “good” or “bad”. This is misleading. Volatile organic compounds (VOC’s) describes a molecular relationship, not a material. There are VOC’s that are harmful to the environment because they react photochemically and contribute to smog. Additionally there are VOC’s that have no evidence or history of being deleterious to human health.
The Environmental Protection Agency’s (EPA) mandate is about what happens outdoors. Indoor air pollution is not addressed by the EPA (or any other government agency). The following is a list the EPA excludes from being defined as a “harmful” VOC because (quoted directly from their intro to this list) “This includes any such organic compound other than the following, which have been determined to have negligible photochemical reactivity”… in other words, not contributing to smog.
So “Zero VOC, or VOC-free” can include the following:
- methane
- ethane
- methylene chloride (dichloromethane)
- 1,1,1-trichloroethane (methyl chloroform)
- 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113)
- trichlorofluoromethane (CFC-11)
- dichlorodifluoromethane (CFC-12)
- chlorodifluoromethane (HCFC-22)
- trifluoromethane (HFC-23)
- 1,2-dichloro 1,1,2,2-tetrafluoroethane (CFC-114)
- chloropentafluoroethane (CFC-115)
- 1,1,1-trifluoro 2,2-dichloroethane (HCFC-123)
- 1,1,1,2-tetrafluoroethane (HFC-134a)
- 1,1-dichloro 1-fluoroethane (HCFC-141b)
- 1-chloro 1,1-difluoroethane (HCFC-142b)
- 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124)
- pentafluoroethane (HFC-125)
- 1,1,2,2-tetrafluoroethane (HFC-134)
- 1,1,1-trifluoroethane (HFC-143a)
- 1,1-difluoroethane (HFC-152a)
- parachlorobenzotrifluoride (PCBTF)
- cyclic, branched, or linear completely methylated siloxanes
- acetone
- perchloroethylene (tetrachloroethylene)
- 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca)
- 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HCFC-225cb)
- 1,1,1,2,3,4,4,5,5,5-decafluoropentane (HFC 43-10mee)
- difluoromethane (HFC-32)
- ethylfluoride (HFC-161)
- 1,1,1,3,3,3-hexafluoropropane (HFC-236fa)
- 1,1,2,2,3-pentafluoropropane (HFC-245ca)
- 1,1,2,3,3-pentafluoropropane (HFC-245ea)
- 1,1,1,2,3-pentafluoropropane (HFC-245eb)
- 1,1,1,3,3-pentafluoropropane (HFC-245fa)
- 1,1,1,2,3,3-hexafluoropropane (HFC-236ea)
- 1,1,1,3,3-pentafluorobutane (HFC-365mfc)
- chlorofluoromethane (HCFC-31)
- 1-chloro-1-fluoroethane (HCFC-151a)
- 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a)
- 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxy-butane (C4F9OCH3 or HFE-7100)
- 2-(difluoromethoxymethyl)-1,1,1,2,3,3,3-heptafluoropropane ((CF3)2CFCF2OCH3)
- 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane (C4F9OC2H5 or HFE-7200)
- 2-(ethoxydifluoromethyl)-1,1,1,2,3,3,3-heptafluoropropane ((CF3)2CFCF2OC2H5)
- methyl acetate
- 1,1,1,2,2,3,3-heptafluoro-3-methoxy-propane (n-C3F7OCH3 or HFE-7000)
- 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-(trifluoromethyl) hexane (HFE-7500)
- 1,1,1,2,3,3,3-heptafluoropropane (HFC 227ea)
- methyl formate (HCOOCH3)
- 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-trifluoromethyl-pentane (HFE-7300)
- dimethyl carbonate
- propylene carbonate
and perfluorocarbon compounds which fall into these classes:
- cyclic, branched, or linear, completely fluorinated alkanes,
- cyclic, branched, or linear, completely fluorinated ethers with no unsaturations,
- cyclic, branched, or linear, completely fluorinated tertiary amines with no unsaturations, and
- sulfur containing perfluorocarbons with no unsaturations and with sulfur bonds only to carbon and fluorine.
by Damon Nazarenko | Oct 1, 2015 | Product Knowledge, Wood
The fashion-forward direction of the wood flooring industry is to offer products that look like they’ve already had a history of use. To recreate a time-worn floor in a brand new box is nearly a museum exercise, involving individual attention to each board. There are seven different ways to express this history, and they are often used in combination:
1) Hand scraping.
This is the most popular technique for simulating a foot-worn floor. When wood flooring was exclusively for the rich, and before drum sanders, a method of smoothing a floor was called hand-scraping. This made the wood as smooth as glass. The modern term “hand-scraping” has come to mean the opposite… and it’s a way of gently gouging the surface and edges of flooring planks to mimic the effect of a century or more of footfalls. Remarkably, most of this is in fact is done by hand. The result is that each board has a unique wear pattern.
2) Wire-brushing.
Wire-brushing mimics the accumulated effects that grittiness (like sand) has when walked on wood. The softer spring wood (the wider of the growth rings) wears off quicker than the harder summer wood, leaving a three dimensional texture that conforms with the grain pattern. Since all beach-front houses go through this history, wire-brushing often accompanies pigmenting the wood to various shades of white and grey. Those colors are associated with the long term bleaching effects of the sun (think driftwood).
3) Saw-marks.
All lumber is “rough-cut” from a log using a circular saw or band-saw. These leave saw-blade marks that are routinely smoothed out in downstream production by planers and sanders. Back in the day when most wood flooring was used for its utility, and not additionally for its appearance, the flooring was merely rough cut lumber and those saw marks remained. Over time, much of that evidence is walked off, leaving only a suggestion of its history. This is the look targeted by manufacturers who employ this visual technique… remnants of saw-marks mixed with smooth.
4) Pillowed edges.
When most first floors sat over crawlspaces or dug basements, wood flooring went through some serious seasonal movement. Moisture from below swells the bottom of the wood and results in cupping. Cupping makes the top edges of the floor proud of the surface of the rest of the floor. This becomes a “corner” that your footfall wears down to a broken edge. When the floor flattens out, the edge is now softened (“pillowed” is what they call it in the industry). That edge was often dirtier than the rest of the floor, making each individual plank look like it had a dark border. This distinctive look is called a French Bleed.
5) Character grades.
When fashioning wood was without the benefit of motors they weren’t interested for the sake of appearance in the extra effort, and waste, that results from excluding usable parts of the log. They exercised that discretion for fine furniture, but not for flooring. So color variation, knots, shorter pieces… if it functioned as a wood floor it was used. Many people prefer the presence of these features in their wood floors… these highlight the fact that every piece of wood is unique to all the world and all of history. Because of the excess movement, sometimes these planks cracked in place and manufacturers have even found a way to mimic that history also.
6) Low gloss finishes.
The first stuff to be applied to wood for the purpose of preservation was most likely a plant-based penetrating oil. These finishes are still used today and in Europe they protect about half the wood floors in service. Planet Hardwood holds an inventory from two of the leading flooring oil manufacturers… still plant-based (and VOC-free). One can buff a penetrating oil to a “glow”, but never to a “gloss”… in other words, the appearance of a penetrating oil is never shiny. Even a shiny finish will lose its glossiness over time with use, and that’s “history”. A low gloss level can be achieved with a variety of finishes… not just a penetrating oil.
7) Authentic History.
Woods like American Chestnut and Longleaf Pine are no longer commercially available from the forest. They either succumbed to an imported blight (Chestnut), or were overharvested and never replanted for the purpose of timber (Longleaf). The only modern source for these species are from reclaimed structural timbers remanufactured into flooring. They have a history by definition. These were virgin first-growth trees hundreds of years older than the average age of a modern harvest. The growth rings are tighter and obviously more numerous. Additionally, their service as structural timbers can include other evidence of history like nail-holes or a patina. We buy recycled wood flooring by the flatbed to serve it up at a reasonable cost.
Planet Hardwood shows a wider variety of these wood flooring choices than any showroom in America. No fooling!
by hbirch | Jan 31, 2014 | Wood
Different woods have different degrees of hardness and density which will affect how they look over time. Eastern White Pine, the softest wood used for flooring, has in many cases withstood over 200 years of use and abuse. You’ll never “walk through” a wood floor.
Hardness and response to moisture are individual to each species, and these properties are important considerations when choosing a wood floor.
The hardness of wood is measured scientifically by the “Janka” test. This test measures the pressure it takes to sink a .444 inch steel ball one half its diameter into the surface of the wood. A higher number denotes a harder wood. Woods that are naturally harder than others will show less dents and evidence of traffic, but this relative standard is mostly for cosmetic reasons as all wood floors will last hundreds of years before they are worn through.
by hbirch | Dec 16, 2013 | Health, Wood
Wood acts like a sponge. It expands in the presence of excess moisture, and contracts when that moisture is given up to a dryer environment. It is always trying to achieve a balance with the prevailing relative humidity. In the Northeast, the natural seasonal swings in relative humidity are wide, and will stress the wood at each extreme. All wood responds in the same way, no matter how it’s mixed, shaved, turned it into powder and glued back together again (like the cores of plastic laminate flooring), wood will react dimensionally to the presence or absence of moisture. Wood flooring is the most stable between 35% and 65% relative humidity, the same range comfortable for people, pets, plants and other living things. Here in New England, even though human activity adds moisture to the air, it is important to humidify your home during the heating season.